Learning Entailment Rules for Unary Templates
نویسندگان
چکیده
Most work on unsupervised entailment rule acquisition focused on rules between templates with two variables, ignoring unary rules entailment rules between templates with a single variable. In this paper we investigate two approaches for unsupervised learning of such rules and compare the proposed methods with a binary rule learning method. The results show that the learned unary rule-sets outperform the binary rule-set. In addition, a novel directional similarity measure for learning entailment, termed Balanced-Inclusion, is the best performing measure.
منابع مشابه
Learning Canonical Forms of Entailment Rules
We propose a modular approach to paraphrase and entailment-rule learning that addresses the morphosyntactic variability of lexical-syntactic templates. Using an entailment module that captures generic morpho-syntactic regularities, we transform every identified template into a canonical form. This way, statistics from different template variations are accumulated for a single template form. Add...
متن کاملEntailment Rules for Predicates: Representation, Learning, Application and Evaluation
A fundamental phenomenon in natural languages is the ability to infer a specific meaning from different textual expressions. Correspondingly, within many NLP applications it is vital to identify the various ways in which a target meaning might be conveyed. For example, NLP systems should be able to infer that “Tom Cruise is married” from the text “Katie Holmes wants to divorce Tom Cruise”. To p...
متن کاملGlobal Learning of Typed Entailment Rules
Extensive knowledge bases of entailment rules between predicates are crucial for applied semantic inference. In this paper we propose an algorithm that utilizes transitivity constraints to learn a globally-optimal set of entailment rules for typed predicates. We model the task as a graph learning problem and suggest methods that scale the algorithm to larger graphs. We apply the algorithm over ...
متن کاملEfficient Global Learning of Entailment Graphs
Entailment rules between predicates are fundamental to many semantic-inference applications. Consequently, learning such rules has been an active field of research in recent years. Methods for learning entailment rules between predicates that take into account dependencies between different rules (e.g., entailment is a transitive relation) have been shown to improve rule quality, but suffer fro...
متن کاملLearning Shallow Semantic Rules for Textual Entailment
In this paper we present a novel technique for integrating lexical-semantic knowledge in systems for learning textual entailment recognition rules: the typed anchors. These describe the semantic relations between words across an entailment pair. We integrate our approach in the cross-pair similarity model. Experimental results show that our approach increases performance of cross-pair similarit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008